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Passive scalar intermittency in compressible flow
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3INFM, Dipartimento di Fisica, Universita` di Genova, I-16146 Genova, Italy

~Received 13 January 1999!

A compressible generalization of the Kraichnan model@Phys. Rev. Lett.72, 1016~1994!# of passive scalar
advection is considered. The dynamical role of compressibility on the intermittency of the scalar statistics is
investigated for the direct cascade regime. Simple physical arguments suggest that an enhanced intermittency
should appear for increasing compressibility, due to the slowing down of Lagrangian trajectory separations.
This is confirmed by a numerical study of the dependence of intermittency exponents on the degree of
compressibility, by a Lagrangian method for calculating simultaneousN-point tracer correlations.
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In the last few years, much effort has been devoted to
study of statistical properties of scalar quantities advected
random flows with short memory. Remarkable progress
understanding intermittency and anomalous scaling has b
achieved@1–4# for the Kraichnan model@1# of passive scalar
advection by random, Gaussian, incompressible and wh
in-time velocity fields. A crucial property of the model is th
equal-time correlation functions obey closed equation of m
tion. Analytical treatments are thus feasible, and the ide
fication of a general mechanism for intermittency has b
established. Its source has been found in zero modes o
operators governing the Eulerian dynamics ofN-point corre-
lation functions@2,3,5#. Concerning numerical studies of th
Kraichnan model, efficient Lagrangian methods have b
recently proposed@6,7# and thanks to them both the limits o
the vanishing of intermittency corrections, for which pertu
bative predictions are available@2,4#, and the nonperturba
tive region, have been successfully investigated@6,8#.

A compressible generalization of the Kraichnan mo
has been recently proposed@9–11# and the existence of ver
different behaviors for the Lagrangian trajectories, depe
ing on the degree of compressibility, has been shown a
lytically @9,10#. For weak compressibility, the well-know
direct cascade of the passive scalar energy takes place.
is associated, from a Lagrangian point of view, to the exp
sive separation of initially close trajectories@8,12#, a feature
characterizing the direct energy cascade for the incompr
ible Kraichnan model as well. On the contrary, when t
compressibility is strong enough, particles collapse: b
nonintermittent inverse cascade of tracer energy exci
large scales and suppression of the short-scale dissip
occur @10#. The relation between intermittency and com
pressibility is the main issue of the present Rapid Comm
nication.

As already highlighted@9,10#, because compressibility in
hibits the separation between Lagrangian trajectories, the
sulting scalar transport slows down and scaling proper
may be affected. Our remark here is that the slowing down
Lagrangian separations plays an essential role in charact
ing intermittency in the direct cascade regime. This can
easily grasped from the following considerations. In the
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rect cascade regime, typical trajectories are stretch
whereas contractions are rare and thus affect only the
treme tails of the probability density function~PDF! of scalar
differences. Furthermore, within a Lagrangian framewo
scalar correlations are essentially governed by the time s
by particles with their mutual distances smaller than the
tegral scale of the problem. The stretching process, typica
the direct energy cascade, is thus intermittent because
tracted trajectories cause strong fluctuations of the t
needed to reach the integral scale. When compressibilit
present, even if weakly, trapping effects are amplified due
the slowing down of Lagrangian separations. It then follo
that the dynamical role of collapsing trajectories increa
for increasing compressibility, and the same should hap
for the intermittency. It is worth noting that the trappin
mechanism, enhanced by the compressibility, works in
same direction as that induced by lowering the spatial dim
siond: it is indeed observed perturbatively@3# that whend is
reduced an increased intermittency arises, a fact corrobor
by numerical evidences@8# comparing results of the incom
pressible Kraichnan model in two and three dimensio
These considerations will be here quantitatively supported
numerical simulations.

The compressible generalization of the Kraichnan mo
is governed by the equation~for the Eulerian dynamics!

] tu~r,t !1v~r,t !•“u~r,t !5k¹2u~r,t !1 f ~r,t !, ~1!

where, as for the incompressible case, the velocity and
forcing are zero mean, Gaussian independent processes,
homogeneous, isotropic and white-in-time. The velocity
self-similar, with the two-point correlation function:

^va~r,t !vb~r8,t8!&5d~ t2t8!@dab
0 2dab~r2r8!#, ~2!

wheredab(r), the so-callededdy-diffusivity, is fixed by isot-
ropy and scaling behavior along the scales:

dab~r!5r jH @A1~d1j21!B#dab1j@A2B#
r ar b

r 2 J ,

~3!
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whered is the dimension of the space.
The degree of compressibility is controlled by the ra

`[C 2/S 2, being S 2[A1(d21)B}^(¹v)2& and C 2[A
}^(¹•v)2&, which satisfies the inequality 0<`<1. The sta-
tistics of the forcing term is defined by the two-point corr
lation function

^ f ~r,t ! f ~r8,t8!&5d~ t2t8!x~ ur2r8u!, ~4!

where x is chosen nearly constant for distanceur2r8u
smaller than the integral scaleL and rapidly decreasing fo
r @L.

It is worth remarking that Eq.~1! physically describes the
evolution of a tracer; that is, a quantity which is conserv
along the Lagrangian trajectories in absence of diffusiv
and forcing. To characterize the advection of a density,
should consider the equation

] tr~r,t !1“•@v~r,t !r~r,t !#5k¹2r~r,t !1 f ~r,t !, ~5!

which in the ideal case~k50, f 50! enjoys the conservation
of the total mass. The density advection equation has al
wide realm of physical applications and should deserv
detailed study in its own, as well as a specific numeri
approach. Hereafter we shall limit ourselves to the case
tracer advection ruled by Eq.~1!.

Exploiting the d correlation in time, equations for th
even scalar correlations~odd correlations being trivially
zero! in the stationary state, can be deduced@13#; for the
generic N-point correlation functionCN

u [^u(r 1)¯u(r N)&
the expression reads

MNCN
u 5(

i , j
xS r i j

L D ^u~r 1!...
î ĵ

u~r N!&, ~6!

with r i j [r i2r j , andMN is the differential operator given
by

MN5 (
1<n,m<N

dab~rn2rm!¹ r na
¹ r mb

2k (
1<n<N

¹ r n

2 .

~7!

As for the incompressible case, this model has a Gaus
limit for j˜0, and the perturbative expansion at smallj’s
can be done as in Ref.@2#. Accordingly, the calculation per
formed in the weakly compressible case~i.e., `,d/j2! cor-
responding to the direct cascade regime leads~see Ref.@10#!
to the expression for the intermittent correctionDN

u , to the
normal scaling exponent (22j)N/2 of theN-point structure

function SN
u (r )5^@u(r)2u(0)#N&}r (22j)N/22DN

u
; namely,

DN
u 5

N~N22!~112` !

2~d22!
j1O~j2!. ~8!

The perturbative approach gives thus a first clue that c
pressibility works to enhance intermittent corrections. W
are, however, interested in checking that this is a general
robust feature associated to compressibility and thus that
present for genericj. This problem is not accessible by pe
turbative techniques; numerical methods are gener
needed to investigate it. With this purpose in mind, we ha
developed a new Lagrangian numerical method~a different
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viewpoint with respect to the one in Ref.@6#!, where the
strategy is now formulated in terms of afirst exit timeprob-
lem @14#.

The method consists of the Monte Carlo simulation
Lagrangian trajectories according to the stochastic differ
tial equation

ṙn5v~rn ,t !1A2kẇn , ~9!

where thewn are independent Wiener processes. The evo
tion of the probabilityPN(t,xut0 ,x0) that theN Lagrangian
tracers have a configurationx5(r1 ,...,rN) at time t given
their initial configurationx0 at timet0 is ruled by the Fokker-
Planck equation

]

]t
PN~ t,xut0 ,x0!1MN

! ~x!PN~ t,xut0 ,x0!50, ~10!

where the operatorMN
! is the adjoint of Eq.~7!. As a con-

sequence of Eq.~10! the probability obeys also the backwa
Kolmogorov equation

]

]t0
PN~ t,xut0 ,x0!1MN~x0!PN~ t,xut0 ,x0!50. ~11!

We now introduce the Green function

G~x,x0!5E
t0

`

dtPN~ t,xut0 ,x0!, ~12!

which has the following properties:

MN
! ~x!G~x,x0!52d~x2x0!, ~13!

MN~x0!G~x,x0!52d~x2x0!. ~14!

Let us define the characteristic size of a configuration oN
particles as R(x)5$(( i , j ur i2r j u2)/@N(N21)/2#%1/2. We
now impose Dirichlet~absorbing! boundary conditions a
R(x)5L@R(x0), and compute numerically the first ex
time from the volume of configuration space limited by t
boundary, which is expressed in terms of the Green func
as ~see, e.g.,@15#!

TL~x0!5E
R(x),L

dx G~x,x0!. ~15!

A trivial consequence of the property~14! is that

MN~x0!TL~x0!521, ~16!

an equation whose structure resembles that of Eq.~6!; indeed
we can conclude, similar to what happens for correlat
functions~e.g.,@2,3#!, thatTL(x0) must amount to the sum o
an inhomogeneous solution plus a linear combination of z
modesf j of the operatorMN :

TL~x0!5(
j

CjL
g2s j f j~x0!1 inhomog. term, ~17!

where the explicit dependence onL has been extracted tak
ing advantage of the scaling properties ofMN , s j is the
scaling exponent of the zero modef j , andCj is a constant
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independent ofL. Among the non trivial zero modesf j ,
only the functions that depend on all the coordinates
contribute to theNth order structure function. We would lik
to extract this contribution leaving aside all the others: it
easy to realize that this result can be achieved performin
linear combination of the exit times with different initial con
ditions. This operation will remove also the inhomogeneo
term. If we denote with¹ i(r) the operator acting on th
functions ofN particles coordinates as

¹ i~r!F~r1 ,...,r i ,...,rN!

5F~r1 ,...,r i1r,...,rN!2F~r1 ,...,r i ,...,rN!

we will have

SN~L !5)
i

¹ i~r!TL~x0!}Lg2zN, ~18!

where zN5(22j)N/22DN
u is the scaling exponent of th

structure functionSN
u (r );r zN. Wheneverx050, due to the

symmetry of thef j ’s under exchanges of particles coord
nates, the expression forSN(L) takes a simple form, which
for example, for N54 reads asS4(L)52TL(0,0,0,0)
28TL(r,0,0,0)16TL(r,r,0,0).

In summary, the numerical method consists of the Mo
Carlo simulation of Lagrangian trajectories ofN particles
advected by a rapidly changing velocity field, according
the Fokker-Planck equation~10!; average first exit times out
side a volume of sizeL are computed for different arrange
ments of the initial conditions, and then linearly combin
according to Eq.~18! in order to extract the scaling expone
zN .

As a final remark, the numerical method here employ
can be viewed as a merging of the two Lagrangian meth
introduced by Frisch, Mazzino, and Vergassola in Ref.@6#
and by Gat and Zeitak in Ref.@16#. Namely, it borrows from
the first one the idea of subtracting exit times of differe
initial conditions to extract the only zero mode that contr

FIG. 1. A log-log plot ofS4(L) for j50.75. ~a! `50, ~b! `
50.25, ~c! `50.5, and ~d! `50.75. Separationr52.731022,
diffusivity k52.331025, number of realizations ranging from 2
3106 @case~a!# to 303106 @case~d!#. Solid lines represent the bes
fit power laws.
n

a

s

e

d
s

t
-

utes to the structure functions, while inherits from the seco
the spirit of working with particle configurations~shapes!.
The advantages of the present method with respect to@6#
mainly reside in the evaluation of first exit times rather th
of residence times, a fact which substantially reduces
computational cost.

We present the numerical results obtained for the sca
of the fourth-order structure functionS4(r ;L)[^@u(r)
2u(0)#4& in three dimensions. As previously mentione
when the dimensiond of the space is lowered fluctuation
increase and as a consequence the number of realiza
needed to have a clean scaling grows as well; the additio
compressibility further enhances this effect. For the first n
merical experiments with the new method, we have th
opted ford53.

The method has been tested performing the analysis o
incompressible limit`50 for different values ofj: the
anomalyD4

u52z22z4 has always been found to be compa
ible with the results presented in Refs.@6,8#. The computa-
tion of S2(L), which can be evaluated analytically, has pr
vided another stringent test for this method.

FIG. 2. As in Fig. 1, forj51.1 and diffusivityk52.531023.

FIG. 3. Anomaly 2z22z4 for the fourth-order structure func
tion, for j50.75 ~squares joined by a dotted-dashed line! and j
51.1 ~circles joined by a dashed line!.
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Varying the degree of compressibilitỳ, we have studied
in the direct cascade regime the connection between
slowing down of Lagrangian trajectories and intermittency
the two distinct valuesj50.75 andj51.1. Notice that for
these two values ofj, the condition (̀ ,d/j2) for the direct
cascade of energy to take place@10# is verified for the entire
range of values 0<`<1 of the compressibility. Different
motivations account for this choice; first of all we avoid
the region ofj close to 0 (g˜2), where capturing the sub
dominant anomalous exponents is numerically expens
and furthermore the results are known from perturbative
pansion. Second, whenj is close to 2 (g˜0) nonlocal ef-
fects are very strong and the range of values of` ~i.e., `
,d/j2! pertaining to the direct cascade is narrower.

In Figs. 1 and 2 are shown the behavior ofS4(L) for the
two values ofj under consideration and for different valu
of `, which all display a fairly good power law scaling
According to the relation~18! the scaling exponent isg
2z452g1D4

u , so that the curves become flatter and flat
as the anomaly grows. It is thus evident from our results t
when compressibility increases, the intermittent correction
the normal scaling grows as well.

Notice that ratio betweenS4 and the dominant contribu
tion to each term of the sum scales asL2z4. As a conse-
quence, small values ofj ~which correspond to large value
of z4! require a larger amount of statistics to make the s
dominant contribution emerge. This is the reason for wh
the scaling region forj50.75 is smaller than that forj
51.1.
,
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Finally, our results are summarized in Fig. 3 which sho
the anomaly 2z22z4 versus the compressibility factor̀ for
j50.75 ~squares joined by a dotted-dashed line! and j
51.1 ~circles joined by a dashed line!. As in Ref. @6#, the
error bars are obtained by analyzing the fluctuations of lo
scaling exponents over octave ratios of values forL, a
method which gives a very conservative estimate of the
rors. The effectiveness of the first exit time computation
somehow balanced by the need of a huge number of rea
tions to achieve a satisfactory statistical convergence. T
drawback is particularly visible for largeL, where the signal
is rather noisy.

In conclusion, we have shown in the context of the Kr
ichnan compressible model that there is a tight relations
between intermittency of passive scalar statistics and c
pressibility of the advecting velocity field. This result can
easily understood from the Lagrangian viewpoint. Interm
tency arises whenever the particles experience long per
of inhibited separation: since compressible flows are cha
terized by the presence of trapping regions, an enhancem
of intermittency can be reasonably expected. The validity
this argument has been assessed by means of a num
Lagrangian method.
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