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Passive scalar intermittency in compressible flow
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A compressible generalization of the Kraichnan mddlys. Rev. Lett72, 1016(1994] of passive scalar
advection is considered. The dynamical role of compressibility on the intermittency of the scalar statistics is
investigated for the direct cascade regime. Simple physical arguments suggest that an enhanced intermittency
should appear for increasing compressibility, due to the slowing down of Lagrangian trajectory separations.
This is confirmed by a numerical study of the dependence of intermittency exponents on the degree of
compressibility, by a Lagrangian method for calculating simultan@byint tracer correlations.
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In the last few years, much effort has been devoted to theect cascade regime, typical trajectories are stretched,
study of statistical properties of scalar quantities advected bwhereas contractions are rare and thus affect only the ex-
random flows with short memory. Remarkable progress irfreme tails of the probability density functiéRDF) of scalar
understanding intermittency and anomalous scaling has beslifferences. Furthermore, within a Lagrangian framework,
achieved 1—4] for the Kraichnan moddll] of passive scalar scalar correlations are essentially governed by the time spent
advection by random, Gaussian, incompressib|e and Whlté)y particIeS with their mutual distances smaller than the in-
in-time velocity fields. A crucial property of the model is that tegral scale of the problem. The stretching process, typical of
equal-time correlation functions obey closed equation of mothe direct energy cascade, is thus intermittent because con-
tion. Analytical treatments are thus feasible, and the identitracted trajectories cause strong fluctuations of the time
fication of a general mechanism for intermittency has beefmeeded to reach the integral scale. When compressibility is
established. Its source has been found in zero modes of tH¥esent, even if weakly, trapping effects are amplified due to
operators governing the Eulerian dynamicg\bpoint corre- the S|0Wing down of Lagrangian separations. It then follows
lation functions[2,3,5. Concerning numerical studies of the that the dynamical role of collapsing trajectories increases
Kraichnan model, efficient Lagrangian methods have beefPr increasing compressibility, and the same should happen
recently proposef,7] and thanks to them both the limits of for the intermittency. It is worth noting that the trapping
the vanishing of intermittency corrections, for which pertur-mechanism, enhanced by the compressibility, works in the
bative predictions are availab[@,4], and the nonperturba- Same direction as that induced by lowering the spatial dimen-
tive region, have been successfully investigd@a. siond: it is indeed observed perturbatively] that whend is

A compressible generalization of the Kraichnan modelreduced an increased intermittency arises, a fact corroborated
has been recently proposi@-11] and the existence of very by numerical evidencel8] comparing results of the incom-
different behaviors for the Lagrangian trajectories, dependpressible Kraichnan model in two and three dimensions.
ing on the degree of compressibility, has been shown analhese considerations will be here quantitatively supported by
lytically [9,10]. For weak compressibility, the well-known numerical simulations.
direct cascade of the passive scalar energy takes place. This The compressible generalization of the Kraichnan model
is associated, from a Lagrangian point of view, to the explois governed by the equatidifor the Eulerian dynamigs
sive separation of initially close trajectorif®,12], a feature
characterizing the direct energy cascade for the incompress-  t0(r,) +v(r,t)-Va(r,t)=«V20(r,) +f(r,t), (1)
ible Kraichnan model as well. On the contrary, when the ) ] .
compressibility is strong enough, particles collapse: botivhere, as for the incompressible case, the velocity and the
nonintermittent inverse cascade of tracer energy excitind®cing are zero mean, Gaussian independent processes, both
large scales and suppression of the short-scale dissipatidlPmogeneous, isotropic and white-in-time. The velocity is
pressibility is the main issue of the present Rapid Commu-
nication. (Va1 OV E(1 1) = 8(t—t)[dgg—dag(r—r)],  (2)

As already highlightedl9,10], because compressibility in-
hibits the separation between Lagrangian trajectories, the révhered,4(r), the so-calleceddy-diffusivity is fixed by isot-
sulting scalar transport slows down and scaling propertie§0Py and scaling behavior along the scales:
may be affected. Our remark here is that the slowing down of
Lagrangian separations plays an essential role in characteriz- _ Nol g
ing intermittency in the direct cascade regime. This can be dop(r)=r* [A+(d+&=1)B]oupt el A-Bl =7,
easily grasped from the following considerations. In the di- 3
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whered is the dimension of the space. viewpoint with respect to the one in Rdi6]), where the
The degree of compressibility is controlled by the ratiostrategy is now formulated in terms offiest exit timeprob-
p=C?152, being S?’=A+(d—1)Bx((Vv)?) and C’=A  lem[14].

«((V-v)?), which satisfies the inequality<9p <1. The sta- The method consists of the Monte Carlo simulation of
tistics of the forcing term is defined by the two-point corre- Lagrangian trajectories according to the stochastic differen-
lation function tial equation

(Frof(r' ) =a(t—=t")x(r=r', 4 Fa=v(ry 1) + V2, 9
where y is chosen nearly constant for distange-r’| where thew,, are independent Wiener processes. The evolu-
smaller than the integral scale and rapidly decreasing for tion of the probabilityPy(t,X|ty,X,) that theN Lagrangian
r>L. tracers have a configuration=(rq,...,ry) at timet given

It is worth remarking that Eq(1) physically describes the their initial configuratiorx, at timet, is ruled by the Fokker-
evolution of a tracer; that is, a quantity which is conservedPlanck equation
along the Lagrangian trajectories in absence of diffusivity
and forcing. To characterize the advection of a density, one ﬁ * _
should consider the equation at Pn(tXlto. Xo) + M{(X)Pr(t.X[to,%0) =0, (10)
ap(r,t)+V-[v(r,t)p(r,)]=«xV2p(r,t)+f(r,t), (5)  where the operataM 7, is the adjoint of Eq(7). As a con-
sequence of Eq10) the probability obeys also the backward

which in the ideal casé&=0, f=0) enjoys the conservation Kolmogorov equation
a

of the total mass. The density advection equation has also

wide realm of physical applications and should deserve a J
detailed study in its own, as well as a specific numerical WPN(th|t01XO)+MN(XO)PN(t1X|tOiXO):O- (1)
approach. Hereafter we shall limit ourselves to the case of 0
tracer advection ruled by Eq1). We now introduce the Green function
Exploiting the & correlation in time, equations for the
even scalar correlationgodd correlations being trivially o
zerg in the stationary state, can be dedudag]; for the G(X'XO):L dtPy(t,X|to.Xo), (12)
generic N-point correlation functionCi=(6(r,)---6(ry)) °
the expression reads which has the following properties:
M N(X)G(X,Xg) = — 8(X—Xg), 13
MyCR=2 x(ﬁ)@(n),ﬁ(m)% ) MIOBX) == 0xx0) 49
- i M(%0) G(X,X0) = — 8(X—Xo). (14)
with rij=r;—rj, and My is the differential operator given | ot ;5 define the characteristic size of a configuratioNof
by particles as R(X)={(;-;|r—r|/[N(N-1)/2]}'2 We
now impose Dirichlet(absorbing boundary conditions at
My= D dagtni—t)V, V. —k >, V2. R(x)=L>R(xo), and compute numerically the first exit
I=n<m=<N remEashsN time from the volume of configuration space limited by the

() boundary, which is expressed in terms of the Green function

As for the incompressible case, this model has a Gaussidi® (S€€; €:9-115])
limit for £—0, and the perturbative expansion at sngl
can be done as in Rgi2]. Accordingly, the calculation per- TL(Xo)=f dx G(x,Xg). (15)
formed in the weakly compressible case., p <d/&?) cor- R()<L
responding to the direct cascade regime lgads Ref[10])
to the expression for the intermittent correctiag, to the
normal scaling exponent (2£)N/2 of the N-point structure My(Xo) TL(X0) = —1, (16)

function S{(r) = ([ 6(r) — 0(0)]N>ocr(2*§)N’2*Arz; namely,

A trivial consequence of the propert§4) is that

an equation whose structure resembles that of @gindeed

s NIN—2)(1+2p) O 8 we can conclude, similar to what happens for correlation
NT 2(d—2) §+0(£9). ® functions(e.g.,[2,3]), thatT (x,) must amount to the sum of

an inhomogeneous solution plus a linear combination of zero
The perturbative approach gives thus a first clue that commodesf; of the operatorMy:
pressibility works to enhance intermittent corrections. We
are, however, interested in checking that this is a general and
robust feature associated to compressibility and thus that it is
present for generi¢. This problem is not accessible by per-
turbative technigues; numerical methods are generallyvhere the explicit dependence @nhas been extracted tak-
needed to investigate it. With this purpose in mind, we haveng advantage of the scaling properties bty, o; is the
developed a new Lagrangian numerical metitadiifferent  scaling exponent of the zero modg, andC; is a constant

TL(XO)=Z C;L”"?if;(Xo) +inhomog. term, (17)
i
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FIG. 1. A log-log plot of2,(L) for £&=0.75.(a) ¢ =0, (b) ¢
=0.25, (c) ¢=0.5, and(d) p=0.75. Separatiop=2.7X10 2,
diffusivity x=2.3x10"°, number of realizations ranging from 20 utes to the structure functions, while inherits from the second
X 10° [case(a)] to 30x 10° [case(d)]. Solid lines represent the best the spirit of working with particle configurationshapes
fit power laws. The advantages of the present method with respe¢6lo

mainly reside in the evaluation of first exit times rather than

independent of.. Among the non trivial zero modef,  of residence times, a fact which substantially reduces the
only the functions that depend on all the coordinates caromputational cost.

Contribute to thé\lth Order structure fUnCtion. We Would ||ke We present the numerica' resu|ts Obtained for the Sca”ng
to extract this contribution leaving aside all the others: it iSgf the fourth-order structure functiors,(r;L)=([ 6(r)

easy to realize that this result can be achieved performing a 6(0)]%) in three dimensions. As previously mentioned,
linear combination of the exit times with different initial con- \yhen the dimension of the space is lowered fluctuations
ditions. This operation_ will remove also the inhpmogeneouqncrease and as a consequence the number of realizations
term. If we denote withVi(p) the operator acting on the peeded to have a clean scaling grows as well; the addition of
functions ofN particles coordinates as compressibility further enhances this effect. For the first nu-
merical experiments with the new method, we have thus

FIG. 2. As in Fig. 1, foré=1.1 and diffusivityx=2.5x 102,

Vip)F(ry, ..., ) opted ford=3.
=F(ry, et P i) = F (g, Fi s ) The method has been tested performing the analysis of the
incompressible limitp =0 for different values ofé the
we will have anomalyA §=2¢,— ¢, has always been found to be compat-
ible with the results presented in Ref§,8]. The computa-
EN(L):H Vi(p)TL(Xg) LY 4N, (18 tion of %,(L), which can be evaluated analytically, has pro-
|

vided another stringent test for this method.

where {y=(2—&) N/2—A,f, is the scaling exponent of the

0.70 . . .
structure functiors,f,(r)~r5N. Wheneverxy=0, due to the

symmetry of thef;’s under exchanges of particles coordi-

nates, the expression far (L) takes a simple form, which,

for example, for N=4 reads as3,(L)=2T,(0,0,0,0) 0.60 r T
—8T.(p,0,0,0)+ 6T, (p,p,0,0). /_,/1""”"‘—/

In summary, the numerical method consists of the Monte | x -
Carlo simulation of Lagrangian trajectories bf particles [ 050 f 7 .
advected by a rapidly changing velocity field, according to SC\\JJ‘ {
the Fokker-Planck equatidd0); average first exit times out- _
side a volume of sizé& are computed for different arrange- 4.
ments of the initial conditions, and then linearly combined 040 ¥ -1 |
according to Eq(18) in order to extract the scaling exponent [ 1
IN- T

As a final remark, the numerical method here employed 039 — ' ' NG

can be viewed as a merging of the two Lagrangian methods
introduced by Frisch, Mazzino, and Vergassola in R6éf.
and by Gat and Zeitak in Rdf16]. Namely, it borrows from

0.25 050
Compressibility factor

FIG. 3. Anomaly Z,— ¢, for the fourth-order structure func-
the first one the idea of subtracting exit times of differenttion, for £=0.75 (squares joined by a dotted-dashed Jimad &

initial conditions to extract the only zero mode that contrib- =1.1 (circles joined by a dashed line
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Varying the degree of compressibiliy, we have studied Finally, our results are summarized in Fig. 3 which shows
in the direct cascade regime the connection between thiae anomaly 2,— ¢, versus the compressibility facter for
slowing down of Lagrangian trajectories and intermittency até=0.75 (squares joined by a dotted-dashed irend ¢
the two distinct valueg=0.75 andé=1.1. Notice that for ~=1.1 (circles joined by a dashed lineAs in Ref.[6], the
these two values of, the condition p<d/&?) for the direct ~ error bars are obtained by analyzing the fluctuations of local
cascade of energy to take pldd#] is verified for the entire  scaling exponents over octave ratios of values Ifor a
range of values &p<1 of the compressibility. Different Method which gives a very conservative estimate of the er-
motivations account for this choice; first of all we avoided 'Ors- The effectiveness of the first exit time computation is
the region of¢ close to 0 {—2), where capturing the sub- somehow balanced by the need of a huge number of realiza-

dominant anomalous exponents is numerically expensivéions to achieve a satisfactory statistical convergence. This

and furthermore the results are known from perturbative exgr"’“"’b"lek is particularly visible for large, where the signal

pansion. Second, whefis close to 2 ¢—0) nonlocal ef- Is rather noisy.

fects are very strong and the range of valuesydii.e., ¢ . In conclusion, we have shown in the_ cont_ext of th? Kra_—
2 7 . . ichnan compressible model that there is a tight relationship
<d/ &%) pertaining to the direct cascade is narrower.

. . between intermittency of passive scalar statistics and com-
twcl)nvz:gtse.s1o%n3ni(?rnca;os:soi\évgrgt]iinbgrrzzv;g:%lifgfl_e)rgg{ \t/g?ues pressibility of the advecting velocity field. This result can be
. ) i . easily understood from the Lagrangian viewpoint. Intermit-
of », which all display a fairly good power law scaling.

According to the relation(18) the scaling exponent is tency arises whenever the particles experience long periods

i AY that th b fatt d flatt of inhibited separation: since compressible flows are charac-
4=~y » SO that the curves become Tiatler and lalterg ;o by the presence of trapping regions, an enhancement

abt intermittency can be reasonably expected. The validity of

when compressibility increases, the intermittent correction 9his argument has been assessed by means of a numerical
the normal scaling grows as well. Lagrangian method.

Notice that ratio betweel, and the dominant contribu-
tion to each term of the sum scales las‘s. As a conse- We acknowledge innumerable discussions on the subject
quence, small values &f (which correspond to large values matter with M. Vergassola. Simulations were partially per-
of {4) require a larger amount of statistics to make the subformed in the framework of the SIVAM project of the Ob-
dominant contribution emerge. This is the reason for whictservatoire de la Qe d’Azur. The generous INFM grant of
the scaling region foré=0.75 is smaller than that fof =~ computer time on the CRAY T3E 1200E at CINECA is also
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